Chapter 1

Transforming musical notations for
universal access to performance and
composition

Silas S. Brown and Peter Robinson

Abstract

Some disabilities can be assisted by using alternative notations and alternative
input methods. This paper describes a system for transforming between different
musical notations, which can be customised to an individual's requirements, hence
supporting many unusual needs that did not specifically have to be accounted for in
the initial design. The customisation is brief, which encourages experimentation
because new ideas can be explored more quickly.

Keywords: music, transformation, low vision, blind, typing difficulties, markup
languages, notations, braille.

1.1 Introduction

Musical notations are coded instructions for musicians to perform music. They
represent co-ordinated events in a stream of time. Internationally, several written
notations are in widespread use, such as Western staff notation, Chinese Jianpu
notation, sol-fa, many instrument-specific notations such as guitar tablature and
Japanese koto notation, and Braille music for the blind, which has numerous
different versions across the world. See Figure 4 for examples.

It is often possible to transcribe a piece of music from one notation into another
in order to make it accessible to a greater number of musicians. Software exists to
effect such transcriptions, such as the music-to-Braille projects MFB [Langolff
et al., 2000] and Goodfeel [McCann, 1997]. Such software works by obtaining a
semantic (symbol-based) computer representation of the source notation, and
algorithmically transforming this into a representation of the desired notation

2 Silas S. Brown and Peter Robinson

which is then realised by a suitable output device. However, existing systems are
limited to dealing with a few specific notations; if a highly unusual or customised
notation is required, this will often call for specialist programming or manual
intervention.

Customised notations. All of these notations can be customised for training
purposes, or for particular tasks such as rapid overview (this is particularly useful
in Braille music). Printed notations can further be customised to address print
disabilities such as low vision or dyslexia, by using a modified set of symbols or a
modified layout-for example, a person with tunnel vision benefits if musical
directions are moved closer to the notes to which they apply, especially if the print
is large. Ideally, software should support such customisation in an open-ended
way, to facilitate needs that the designer did not originally anticipate.

Input. Musical composition and input presents another challenge. It is
possible to enter music into a computer by playing it on an electronic keyboard or
other instrument, but the results do not always match the user's intentions due to
quantisation errors, and many disabled users are excluded because of the dexterity
required. A music notation editor is frequently more appropriate. However,
notations that are optimal for reading are not necessarily optimal for writing or
editing-conceptual similarity between reading and writing is useful, but this can be
overshadowed by a disabled person's accessibility needs. For example, someone
with typing difficulties might prefer a terse input notation even if it means more
training. People with print disabilities often find direct manipulation music
publishing systems such as Sibelius [Finn and Finn, 2001] difficult to use, and
prefer character-based music languages that can be written in any text editor,
including any specialist or customised text editing environments they may have.

Several different character-based notations are in use by music typesetting
systems and online repositories, and it is possible to design new ones. The ideal
notation will vary with the style of music and the individual's method of
composing or editing, as well as their disability and input device. For this reason it
is useful to support flexibility in input (“write only”) as well as output (“read
only”) notations when supporting musical activities with software.

1.2 Related work

Besides the specialist Braille transcription software that has already been
mentioned, and numerous music typesetting tools and other software that is
capable of dealing with more than one notation (e.g. recent versions of Sibelius can
convert between Western staff and guitar tablature), there are also some efforts to
generalise the problem of transcribing between musical notations so that new or
rarely-used notations can be supported as needed. In an earlier project [Brown,
2000], the first author represented musical scores as databases with each record
corresponding to an event in the music; a special reporting language was used to
generate various forms of Braille as well as data for music typesetting software.
The main limitations were the difficulty of supporting new input formats and the
verbosity of the languages used.

Transforming musical notations 3

The problem can also be addressed by considering musical data as an example
of general structured data, and utilising a generalised transformation framework
such as XSLT, the XML transformation system [W3C, 1999] or TXL [Cordy et al.,
1988] to effect the transcriptions. These languages are verbose, so customising
them involves considerable work, particularly for print-disabled people—those
with blindness, low vision, dyslexia or another impairment that restricts the use of
print. There is no built-in support for multi-dimensional data, but music is
inherently multi-dimensional, and forcing it into a hierarchical structure introduces
arbitrary assumptions about its processing order and introduces difficulties when
there are exceptions to the structure [Castan et al., 2000]. This increases verbosity.

1.3 Implementation

The authors' transformation framework 4DML [Brown and Robinson, 2002] has
been used as the basis of a transformation system for musical notations. The 4DML
framework consists of four main components:

1. An internal representation of structured data with multi-dimensional
structures,

2. Matrix markup language (MML), a generalised markup language designed to
facilitate the input of multi-dimensional data,

3. A transformation tool that takes XML or MML as input, uses the above
internal representation, and produces output in any text-based language by
following a model of the desired structure,

4. Compact model language (CML) for representing the model (models may also
be represented using XML).

Preprocessing Model (3)

(rarely needed)

Input in XML 4DML repre- Transform Text-based
or MML (1) sentation (2) output (4)

Key: | Data| | Processing| | Tools outside 4DMLI Typesetting (3) I

Figure 1: Overview of the 4DML transformation framework

As shown in Figure 1, data in XML or MML (1) is first converted into 4DML
(2)—a process which needs no external information as XML and MML are both
self-describing formats—and then transformed into any text-based output language
(4) under the direction of a model (3). The entire process may be surrounded by
other transformations, such as the passing of the output through a typesetting
system (5).

4 Silas S. Brown and Peter Robinson

Matrix markup language (MML)

It can be cumbersome to hand-code multi-dimensional data in a hierarchical
markup language like XML, since the markup is very verbose and repetitive. For
example, in coding the lyrics of a song, one might have to enclose each syllable in
a <SYLLABLE>...</SYLLABLE> pair, whereas it would be easier to define a
separator (for example, hyphen) to stand for “next syllable” (other separators can
advance the word, verse number or translation). In the general case, one can
construct a parser for an arbitrary input language, but this can be a significant
amount of effort for an end-user. There is scope for a markup language that
provides for some simple re-definitions (such as “whitespace means next syllable”)
while not being as complex as a complete parser generator tool.

Matrix Markup Language (MML) is a text-based language that can represent
structure in several ways. It consists of a mixture of directives and data. For
example, the !block directive begins a matrix-like block of data that starts with
directives such as

Have paragraph ' newline ? whitespace * -

as system ' verse ? word ® syllable *
which defines how the text is to be parsed—paragraphs represent “systems”, lines
represent “verses”, whitespace separates “words” and hyphens separate “syllables”
(the numbers are for illustrative purposes only and are not part of MML). The
have directive takes a list of input tokens, the word as and then a list of the
corresponding components in the structure being described. These tokens are then
referred to by the model (see below) during output. If desired, the lists may be built
up from several have...as directives. Punctuation and other arbitrary strings may
also be defined as separators, and there are facilities for representing overlapping
sets of independent markup via multiple have directives separated by the word
also. The data is also checked for consistency as it is processed, so any errors
such as missing data are reported.

A “system” is a unit of physical layout, and the layout will probably change
with the transformation. Nevertheless, representing the original layout (if any)
often facilitates error correction and cross-referencing.

4

Compact model language (CML)

4DML uses a “model” to outline the structure of the desired output, which
facilitates adjusting the output notation as needed. The data is automatically
rearranged into the structure given by the model—the model guides a complex
sorting operation, and also specifies any extra typesetting instructions in the
language of whatever typesetting system is to be used. This means there is very
weak coupling between the design of the input and that of the output; each can be
customised independently of the other.

CML is a text-based language designed to facilitate the brief coding of models.
It consists of literal text to be output directly, interspersed with code that generates
output from the 4DML representation. In practice, most models have a repetitive

Transforming musical notations 5

structure; they express such things as “for each song, for each verse, for each
syllable,...” which is expressed as song/verse/syllable. CML also has
other operators and can represent any hierarchical document, but its syntax is
designed for representing typical models concisely.

1.4 Evaluation

People with print disabilities should be able to program this transformation system
by themselves, to assist with their musical work. To demonstrate this, an individual
with low vision has used the system for the tasks described in this section. We
hope to find other interested individuals in the future.

!'block hand
have whitespace , character . as bar beat note string

r,r,r,Bd e,dB,e,dB A,B,D,EF GB,AG,E,ED E,r,r,Bd e,dB,e,dB
A,B,D,EE GB,AG,E,ED E,r,r,EF G,GB,d,cB A,A,B,GA B,g,ed,Bd
e,r,r,Bd e,dB,e,dB A,B,D,EF GB,AG,E,ED E,r,r,Bd etc
'endblock

!'block hand
have whitespace , / character as bar beat note string

r,r,r,r EG,r,EA,r D,r,r,r E,r,r,r r,r,E,r EG,r,EA,r
b,r,r,r E,r,r,r r,r,r,r E,r,EGB,r DE,r,EG,r EG,r,EG,r
EG,r,EG,r EG,r,EG,r E,r,r,r E,r,r,r B/G,EB/G,EGB,r etc
'endblock

Figure 2: Input in MML using a syntax designed by the user.

The individual arranged some music for the Japanese Koto and encoded in a
text editor using a notation that was invented for the purpose and appropriate to the
music. This was achieved by means of MML and is shown in Figure 2—notice that
the notation changes half way through the figure. Koto tablature was then produced
by using 4DML to drive the layout engine Lout [Kingston, 1993], which is a
general document preparation system that takes a description of page layout and
typesets it as PostScript or PDF. The Japanese characters were implemented as
images, as Lout does not support Unicode. The model is shown in Figure 3, which
is less “cluttered” when the comments are removed. It consists of a translation
table of notes to symbols, and then nested loops over bars, hands, beats and
notes—notice that the nesting order is different from that of the input and its
transposition is automatic. Other 4DML models allowed the same music to be sent
to Western music typesetting systems, Braille printers using multiple versions of

6 Silas S. Brown and Peter Robinson

Braille, and other formats as shown in Figure 4. It is possible to implement models
for new types of output as needed.

@Include{koto.setup} @Doc @Text @Begin
@Display clines @Break { @Heading 18p @Font {The Foggy Dew}
(Irish) } (alternatively, the titles could be kept in the MML)
Tuning: Nogijoshi QPP (Now follows a preparatory translation table)
[[cml chord export-code /
string begin="QOneCol {" end="}" / ((for each string,)
note value=D/"@IncludeGraphic kanji2.ps",
note value=E/"@IncludeGraphic kanji3.ps",
note value=F/"@QIncludeGraphic kanji3.ps", (re-writing F as E)
... (more notes follow)
M1 (End of translation table; start of layout proper)
@RightDisplay -90d @QRotate (because Koto is read in columns from right to left)
21c @QWide {ragged 1.5vx}@Break {
[[cml bar group-size=20 group="} @RightDisplay -90d @Rotate 24c @QWide {ragged
1.5vx}@Break {" /((for each bar, with new page every 20 bars)
11# Bar [[cml bar count]] (comment the bar number—useful in debugging)
3.9c @Wide @Box { (each bar is a 3.9cm-wide boz before rotating downward)
[[cml hand between="//0.1c @FullWidthRule //0.1c"/(]] (for each hand)
90d @Rotate 2c @Wide { (each hand is a 2cm box rotated left)
[[cml beat between="//0.1c 1.3c @Wide @LocalWidthRule //0.1c"/(]]
@Centre { (two cases—1 or 2 notes in the beat
—handle differently because it affects scaling)
[[cml note total=1 no-strip call=chord]] (call the
[[cml note total=2 no-strip call=chord translation table)
begin="{0.8 0.5} @Scale " between=" // "]]
}
[[cml)]] (end of code for each beat)
//0.1c (this Lout code means 0.1cm vertical gap)

}
[[eml)]] (end of code for each hand)

}
[[eml)]] (end of code for each bar)
} @QEnd @Text

Figure 3: 4ADML model as CML embedded in Lout. The literal text is shown in roman type,
the code in bold sans serif type, and the comments in italics are added here for
explanatory purposes only and are not part of CML.

Transforming musical notations 7

The Foggy Dew The Foggy Dew
(irish)

Tuning: Nogijoshi

[T h

-

gl |

] mu‘\ l|)I-‘I:H

tl= rt)-‘ | ‘I\I

Mg

Stk

b 110
|
=
=

\ ‘ \m

=R

N‘[H‘Eﬁ

Il ‘\[H‘El:t

)M">

(a) Western staff notation (b) Japanese Koto tablature
H H
H H
HIH
(c) English Braille using “with” signs (d) English “bar over bar” Braille

e g o Lo L. |
34 [531°7 5’7 |1--57 | SEceprmraee e e e
1°75 |45°712 |35 43 11°7 | =« |
' ' 7 R R R R o
(e) Chinese Jianpu (f) Guitar tablature

Figure 4: Output in various notations

8 Silas S. Brown and Peter Robinson

begin music
begin part

'block pitch
have whitespace character as bar note

r rrrd ddddfca aarrd ddddfca aadce gfcdfeca gfcddfeeg
gfbagffg dcfffg feaabb ddcc bbaa gfgaabaadfa ddcbbdf
baggbdgfe egfee gfeebdrad daffaaaad drdcbbdf baggbdgfe egfee
etc

'endblock

'block duration
have whitespace character as bar note

0 2488 8881144 28888

8881144 28114 11481148
114111148 11481148 114848
114848 4882 4882 88888883333
etc

tendblock

Figure 5: Part of a piece in an aspect-oriented encoding. Other aspects (not shown) are
octaves, enharmonics, dots, tuplets, phrasing, articulation, ornaments, dynamics, text, time
and key changes and typographic adjustments.

bar between="

" / part between="
" (

uptext begin="U: " end="
",

keychange/posn number=1 after=" ",

note between=" " / (
tie/posn number=1 end=
pitch, accidental, dot, duration,
octave, shift, tuplet, articulation,
tie/posn start-at=2 begin=" ",
dynamics begin=" "
):

keychange/posn number=2 before=" "

)

n n
s

Figure 6: CML code to interleave Figure 5 into the format of M-Tx (a music typesetter)

Another experiment involved the use of “aspect-oriented” music encodings,
imitation of aspect-oriented programming [Elrad et al., 2001]. Different aspects of
the music, such as note letters, octaves, durations, enharmonics, ornaments, etc,

Transforming musical notations 9

were coded on separate passes through the score (Figure 5), and the model
interleaved them when producing the typesetting instructions (Figure 6). This
facilitated the transcription of already-written music because the user need consider
only one aspect at a time, avoiding the need to switch rapidly between many
different features of a complex input language; the user was able to encode a
complex score which he had been unwilling to attempt using conventional
methods.

Aspect-oriented encoding also proved beneficial for original composition, the
different aspects of the composition being added at different times. In this case the
“aspects” were not always aspects of musical notation; they also included aspects
of the compositional framework defined by the user (such as “arpeggio type” and
“time distortion”) which were converted into musical notation by the user's model.

The system was also used to typeset a large number of Chinese songs in various
formats including an invented sol/-fa like notation; in this case most of the work
was in arranging for the model to produce and typeset pronunciation aids in an
accessible form, and this is discussed elsewhere [Brown and Robinson, 2003].

1.5 Conclusion

A transformation system for musical notations has been constructed using the
4DML framework. This allows people with unusual accessibility needs to
customise both the presentation of musical notations and the means of inputting
them to their individual requirements, and allows music to be transformed between
different presentations for different people. This should increase the accessibility
of music as an educational subject, a vocation and an avocation. The aspect-
oriented method of encoding music that was introduced also holds potential for
music publishers and repositories, because it could be used to divide encoding
skills among several people.

4DML's primary contribution is the brief-but-readable nature of its models,
which aids in the rapid prototyping of transformations. It encourages a
consideration of the notations themselves rather than the algorithmic methods for
their transformation, hence allowing new notations to be experimented with more
easily. In future it could be used to assist in experimenting with completely new
ways of presenting music, such as via sign language, pictorially, or in tactile forms
other than Braille (some physical conditions preclude good Braille reading but
allow other tactile forms of communication). This would make music accessible to
an even greater number of individuals.

4DML has also been used for the transformation of other notations; a
forthcoming thesis will demonstrate its applicability to mathematics, diagrams,
websites, experimental data and personal notes. Virtually all information-society
applications involve notations, and the transformation of these between different
versions is a component part of universal access, since it can help to cater for
special needs and for differing tasks and environments. Tools that support the
programming of such transformations, such as 4DML, can make it easier to create
new notations on demand and to implement universal design.

10 Silas S. Brown and Peter Robinson

1.6 References

Brown, S.S. (2000). An extensible system for conversion of musical-notation data
to braille musical notation. Computing in Musicology, 12:45-74. The original
was an undergraduate dissertation entitled “A Representation and Conversion
System for Musical Notation”, Cambridge University Computer Laboratory,
2000.

Brown, S.S. and Robinson, P. (2002). Automatically rearranging structured data
for customised special-needs presentations. In Keates, S., Clarkson, P.J.,
Langdon, P., and Robinson, P., editors, Universal Access and Assistive
Technology: proceedings of the Cambridge Workshop on UA and AT, pages
109-118.

Brown, S.S. and Robinson, P. (2003). Addressing print disabilities in adult foreign-
language acquisition. In Stephanidis, C., editor, Proceedings of the 10th
International Conference on Human-Computer Interaction (HCII 2003),
Vol.4: Universal Access in HCI, pages 38-42. Lawrence Erlbaum Associates.

Castan, G., Good, M., and Roland, P. (2000). Extensible markup language (XML)
for music applications: An introduction. Computing in Musicology, 12:95-102.

Cordy, J.R., Halpern, C.D., and Promislow, E. (1988). TXL: A rapid prototyping
system for programming language dialects. In Proceedings of The
International Conference of Computer Languages, pages 280-285, Miami, FL.

Elrad, T., Filman, R.E., and Bader, A. (2001). Aspect-oriented programming:
Introduction. Communications of the ACM, 44(10):29-32.

Finn, B. and Finn, J. (2001). Sibelius: The Music Notation Software. Sibelius
Software Ltd, Cambridge, http://www.sibelius-software.com/.

Kingston, J.H. (1993). The design and implementation of the Lout document
formatting language. Software—Practice and Experience, 23:1001-1041.

Langolff, D., Jessel, N., and Levy, D. (2000). MFB (music for the blind): A
software able to transcribe and create musical scores into braille and to be used
by blind persons. In Proceedings of the 6th ERCIM Workshop on “User
Interfaces for All”’, number 17 in Short Papers, page 6. ERCIM.

McCann, B. (1997). GOODFEEL Braille Music Translator. Dancing Dots Braille
Music Technology, http://www.dancingdots.com/.

World Wide Web Consortium (1999). XSL Transformations (XSLT) Version 1.0,
W3C Recommendation.
http://www.w3.0rg/TR/1999/REC-xs1t-19991116.

