
Chapter 11

Automatically Rearranging Structured Data
for Customised Special-Needs
Presentations
S. S. Brown and P. Robinson

Introduction
Computers are most frequently used for processing text, or for processing signal-
based data such as graphics, audio and video. However, there is also a significant
amount of non-textual symbol-based data, such as musical scores, mathematics,
schematics, and scientific models, that are encoded in such a way that they can be
manipulated by algorithms at a higher level than simply processing the signal.
Such data can be used for complex search queries, for example.

In order to present such data to people, it must be sent to an output device, such
as a screen, a printer, a Braille embosser, or a speech synthesiser. This usually
involves one or more transformations, in which the data is changed by an
algorithm. If an alternative form of presentation is required, perhaps for a special
need, then this algorithm often needs to be customised, modified, or re-written
altogether. Such modifications can be beyond a developer’s resources, and this
limits the ability of software to adapt the presentation to the needs of a diverse
range of people. It also limits the extent to which end-users can customise the
presentation to their own individual needs.

This paper proposes a different paradigm for representing and transforming
structured data, which can help developers (particularly print-disabled developers)
to build systems that automatically transcribe data into different formats. This
benefits universal access because the methods of presenting data to print-disabled
people are far more diverse than one might think, and the need cannot be
completely addressed simply by writing a limited number of conversion programs
or by adopting a standard “accessible” presentation.

2 S.S. Brown and P. Robinson

Related Work

Diversity of Special Needs

Special needs are diverse and can be difficult to anticipate. A person’s ability to
use data in printed form may be hampered by a print disability, such as blindness,
low vision, or dyslexia. It may also be hampered by educational and cultural
differences — the person may have learned a notation system that is different from
the one being used in the presentation.

The diversity of print disabilities is rarely acknowledged in the literature. Many
papers use the phrase “blind and visually impaired” when discussing designs for
blind people, implying that people with low vision work in the same way; in fact,
many with low vision use their residual sight as much as they can. Other papers
(such as Hermsdorf et al., 1998) assume that the needs of all partially-sighted
people are much the same. Jacko et al. (1998, 1999) show that this is not true, and
suggest that a user’s needs can be determined by clinical assessment. Even this can
be difficult in the case of some eye conditions, such as nystagmus, which can vary
over time and can produce different perceptual results for different people (Taylor
& Harris, 1999). Some users need to be given control over the presentation
themselves, as Gregor and Newell explain for some cases of dyslexia (2000).

Many industry-standard applications already allow the customisation of fonts,
sizes and colours, although it can be difficult and is not always reliable. Not all of
these applications allow the layout of structured data to be changed to compensate
for the reduced viewing area to text size ratio (a problem that is also prevalent in
the mobile telephone industry). Also, people who have difficulty fixing their gaze
can sometimes be helped by different layouts, and this requires even more
customisation.

Educational background can also contribute to the requirement for an
alternative presentation. A good example of this is in music — besides Western
staff notation, musicians use various tablature and instrument-specific notations, as
well as sol-fa, Chinese Jianpu, and others, and it is often possible to transcribe a
piece of music from one notation into another in order to make it accessible to a
greater number of musicians. Braille music also has numerous different versions
across the world, and most existing transcription software, such as Goodfeel
(McCann), cannot generate all of them. And sometimes an educational
establishment will customise a notation for pedagogical purposes — while students
are learning a complex notation, they need documents that only use the subset of it
that they already know (Ofsted, 2000).

Although it is common practice to focus on one need at a time, it is possible to
envisage individuals who have a combination of several of the above-mentioned
special needs, and this gives rise to even more diversity.

 Automatically rearranging structured data for customised special-needs presentations 3

Existing Transformation Systems

There is no shortage of books and websites on XML (W3C, 2000), and on related
tools for presenting it (such as the Apache Cocoon project), many of which make
use of the XSLT transformation language (W3C, 1999). It is often claimed that this
language is Turing-powerful and is therefore adequate for any transformation task.

However, some common transformation tasks are relatively difficult to achieve
in XSLT, particularly for people with print disabilities, because so much code
needs to be written. Consider, for example, matrix transposition. This is frequently
encountered when processing musical scores, which can be structured either with
many bars (measures) within each part or with many parts within each bar:

<SCORE> <SCORE>

<PART> <BAR>

<BAR> a </BAR> <PART> a </PART>

<BAR> b </BAR> <PART> c </PART>

</PART> </BAR>

<PART> <BAR>

<BAR> c </BAR> <PART> b </PART>

<BAR> d </BAR> <PART> d </PART>

</PART> </BAR>

</SCORE>

↔ =

</SCORE>

While this transformation can be done in XSLT, the resulting code is long and
complex.

In an earlier project (Brown, 2000), the first author represented musical scores
in an unstructured tuple space. Each tuple was a list of attribute/value pairs that
represented an isolated event in the music, such as:
(type=note, letter=c, octave=2, barNumber=5, part=1,
time=5, notatedLength=2, realLength=1/2,
accidental=sharp, staccato=1)

A scripting language was developed for transforming this into the output; it
contained a construct called foreach, which sorted the tuple space using a given
attribute as the sort key, divided the result into subspaces (one for each unique
value of the given attribute), and executed the enclosed code on each of these
subspaces. Thus it was easy to write code that structured the output without having
to consider how the input was structured, such as:

4 S.S. Brown and P. Robinson

foreach bar

foreach part

foreach time

…

end foreach time

end foreach part

end foreach bar

However, this model does not adequately deal with cases where the original
hierarchy does need to be preserved, such as mathematical expressions (which are
recursive). For these, XSLT is much simpler. A general system must be able to
deal with documents that contain a mixture of text, music, mathematics and other
notations (consider an encyclopaedia for example), which suggests that some sort
of hybrid system is needed, which gives the benefits of both XSLT and the tuple
space paradigm.

A Four-Dimensional Markup Language
Markup languages, such as XML, can be used for describing hierarchical structures
over documents and data. A piece of data can be enclosed within an “element”,
which can in turn be a member of a higher-level element, and so on. As described
above, this model becomes more difficult to work with when the data can be
divided in more than one manner.

The proposed four-dimensional markup language (4DML) allows the scope of
an element to be non-contiguous; this makes it easier to represent and address
multiple, overlapping sets of markup. The document is represented as a set of
points in a discrete four-dimensional space (fourspace) with the following
dimensions:

• = Element name;
• = Element position (it is possible for elements of different names to share the

same position);
• = Element ‘depth’, indicating how deeply nested the element is in the tree

(this is required for disambiguating between identical elements at different
levels of a recursive structure);

• = Scope. Each value on this axis corresponds to a unique instance of a
symbol (a string of any length) in the document. No ordering is implied —
that is defined by element positions. Symbols can be empty placeholders to
represent elements that have no data.

An element has one point for each symbol in its scope (including those in the
scope of its children). Thus there are many points for each symbol. To identify an
element in the fourspace, it is sufficient to specify any one of that element’s points.

 Automatically rearranging structured data for customised special-needs presentations 5

It is not intended for the fourspace to be directly visible to the user; it is
interacted with by converting to and from XML or another language (this paper
uses XML without trailing closing tags). When representing XML, elements with
empty names are added around XML cdata (to preserve the position information
when mixing cdata with other child elements), and XML attributes are represented
as children of a child element named !attributes (not valid in XML) which
does not disturb the position numbers of the other children.

Transformation by Model

This operation takes as inputs two fourspaces — the input and the model (or
template). The return value is the result of transforming the structure of the input to
match that of the model. For example, the model to effect the transformation in the
example above is <SCORE> <BAR> <PART>. Note that the models are written
using the structure of the output only — the user does not have to know what (if
any) transpositions should occur to achieve the desired structure.

The model fourspace is recursively traversed top-down (if two or more
elements share the same position number then they are processed in an undefined
order). For each element e in the model, the input fourspace is searched for
elements with the same name as e, and only the least deeply-nested of those
elements are considered. The input is divided into subspaces, one for each of these
elements, with the elements themselves removed. The part of the model enclosed
within e is then applied to each of these subspaces, and each result is “covered”
with an element named after e. If e is a leaf node in the model, then each result is a
symbol representing all the data in that subspace, in the order given by top-down
traversal.

Reporting lost data. If the model does not specify every element, it is possible
that some data will be lost. The algorithm can return this data, as a fourspace
containing points that were in the input fourspace but were not used in generating
the output. This will contain just enough of the input’s structure to show where the
lost data was. If this is presented to the user in some way, it can be used for
debugging the model, or at least for summarising what had to be lost in the
conversion.

Parameters in the Model
Parameters to the model’s elements are stored in the same way as XML

attributes. The following parameters are defined, and the design is extensible with
new parameters. When doing this, one should not be afraid of redundancy, because
different users approach tasks in different ways.

rename and nomarkup. rename specifies a new name for the element, to
be used in the output. This is useful if the nomenclature is different (e.g.
<BAR rename="MEASURE">). Element names that are empty (rename="")
are accepted; when converting to XML, no markup is outputted around such
elements. For convenience, the parameter nomarkup, if present, is equivalent to
setting rename="" for this and all child elements.

6 S.S. Brown and P. Robinson

before, after, between, begin, end, and arbitrary text.
<TD before="a" after="b" between="c"/> specifies that, if there are
any TD elements at all, then a should be added as cdata before the first element, b
after the last element, and c between each. Parameters begin and end are also
provided for adding cdata within each element (at its beginning and end
respectively). Additionally, any text in the model is copied to the output whenever
it is encountered. Thus the model:

<TABLE> begin table
<TR> <TD/> end tr </TR>

end table
will insert the text “begin table”, “end table” and “end tr” at the appropriate places
in the output; this could be used to output a structure in a non-XML language,
particularly if nomarkup is used. However, the effect of <TD> text </TD>
may not be obvious – the TD is no longer a leaf node in the model, so its contents
are completely replaced by “text”. The use of parameters begin and end is
recommended instead.

In all cases, if XML is used to enter the model then there should be some means
of representing characters like < or " in the text. This could be done by expanding
XML entities (such as <).

start-at, end-at and number. start-at and end-at can be used to
restrict which elements are processed. For example, start-at="4" end-
at="5" causes only the 4th and 5th elements that are found to be processed. For
convenience, number="n" sets both values to n.

Reserved element names and wildcard. It is sometimes necessary to
combine the above with a way of matching any element name; for example, the
two parameters of a MathML msub element may need to be treated differently
(number required) but each can be one of a number of possible element types. It
would be useful to reserve a “wildcard” element name that, when encountered in
the model, causes that model element to match on all top-level input elements, and
not to remove the said input elements from the subsets it generates.

However, reserving special element names introduces complications when an
element in the input has the reserved name. One way around this is to make the
reserved name customisable (with no default). This can be done in the model —
the wildcard parameter specifies the name of the wildcard elements, and applies
within the scope of the current model element (perhaps the top-level element).

Namespaces. XML namespaces are a useful alternative to reserved words,
and namespaces can also be defined which are equivalent to setting certain
attributes in a model element. This can lead to more concise models; for example,
if the namespace seq pointed to http://ssb22.cam.ac.uk/
set/sequential/1, then <seq:P> would be equivalent to
<P sequential="1">. However, the use of namespaces should not be
enforced, since not all editors support them, and they can detract from the
conciseness of small models.

children-only and sequential. The children-only parameter, if
present, causes only elements that are (direct or indirect) children of the given

 Automatically rearranging structured data for customised special-needs presentations 7

element to be considered. For example, consider the effect of the model <A>
on the input <A1><A2/><A3/> (the subscripts are added for annotation). As it
is, the model’s <A/> will apply to the input’s A1, but if <B children-
only="1"> were used, it would instead apply to A2 and A3 (A1 would be ignored).

sequential causes each input element’s immediate children to be processed
sequentially, rather than being grouped by element name as would normally
happen. This will often be used when processing documents that contain a mixture
of different types of object in any order (as is the case with XHTML).
sequential implies children-only, and also that only an element’s
immediate children are considered by the next level of the model. As a special
case, sequential="cdata" additionally causes any cdata elements (at that
level) to be copied from input to output.

call. This is a means of adding recursion to the model. For example, in:
<math>

<mrow call="math"/>
<mi>…</mi>
…

each mrow element is treated as though it were another math element. It is
also possible to call elements non-recursively, as in:

$…$
<p sequential="1">

<math call="math"/>
…

external. Consider the effect of the model <SCORE><PART><TITLE/>
… on the input:

<SCORE>
<TITLE> … </TITLE>
<PART> … <PART>
…

The intention here is that each PART bears the TITLE of the SCORE. However,
TITLE’s data is outside the scope of the PART element and will therefore not be
present in the corresponding subset of the input when PART is processed. It can be
reached by searching a display stack of fourspaces that contain all points not
present in any of the subspaces generated by the model. Hence, if no TITLEs are
found in the PART, then the SCORE will be searched (this search excluding all of
the PARTs); if no TITLEs are found there then the next level up will be searched
and so on.

This behaviour can be overridden with the external parameter;
external="never" would cause only the PART to be searched;
external="always" would cause only the SCORE and higher-level elements
to be searched.

8 S.S. Brown and P. Robinson

Evaluation
The transformation by model algorithm has been implemented in Python. The
model and input are read from XML files, and the output is generated as XML (or
as plain text if nomarkup is used at the top level).

The prototype can be used from the command line or as a filter in a pipe.
Additionally, a graphical user interface was constructed that displays the model,
output, and lost data as tree controls (similar to those used in Windows Explorer),
and allows the user to edit the model tree while observing the effects of these
changes on the other two trees.

Test cases. The British Broadcasting Corporation (BBC) has a website that
publishes local weather forecasts; each forecast is some 30K of HTML. After this
was converted to XHTML, the prototype was used to transform it into a one-line
textual summary suitable for being read by a speech synthesiser, sent as an SMS
message, or being displayed in a login script or similar:

→

BBC Weather Centre.
Tuesday: Sunny
Intervals. Wednesday:
Sunny Intervals.
Thursday: Cloudy.
Friday: Light
Showers. Saturday:
Sunny Intervals

Although the transformation is easily invalidated by changes in the BBC’s
house style, it does demonstrate the relative simplicity of the prototype’s models:

<TABLE nomarkup="1">
<TABLE children-only="1">

<TD start-at="4">
<TR start-at="2" end-at="7">

<B before=". " after=": "/>
<ALT/>

The prototype was also used to parse a MathML document (which was
generated from LaTeX by the utility tex4ht), and to output it as English text. For
example, the expression:

=

k

n

n

n
af

0

became “sigma from n equals 0 to k of f to the n a over n”. Since tex4ht outputs
MathML in “presentation” format and uses Unicode entities for such things as , it
was necessary to extend the model language with a value attribute, so that entries
like <mo value="∑"> sigma </mo> could be used to translate the
symbols.

 Automatically rearranging structured data for customised special-needs presentations 9

Conclusion
A system was developed that allows the user to specify the structure of the desired
output in a relatively concise manner. The concept described can be used to
prototype more quickly systems for presenting structured data in alternative
formats for people with special needs. The system can be extended for use with a
wider range of transformation tasks. It will probably be more useful when dealing
with multi-dimensional data such as musical scores.

The method of inputting the desired structure is left open; it need not be XML.
Future work may include allowing the user to describe the desired structure by
creating an annotated example document. It might also be possible to develop a
parser generator that takes similar specifications, so that there is greater conceptual
similarity between parsing data and formatting it.

The prototype tends to generate large numbers of points in the fourspace, and
this is not efficient in space or time, even though the points are stored in a data
structure that allows for faster queries. There is scope for developing a more
efficient model for use in realtime or embedded applications.

Acknowledgements
The first author is supported by a studentship from the UK Engineering and
Physical Sciences Research Council.

References
Silas Brown. An extensible system for conversion of musical-notation data to braille

musical notation. Computing in Musicology, 12:45-74, 2001. The original was an
undergraduate dissertation entitled “A Representation and Conversion System for Musical
Notation”, Cambridge University Computer Laboratory, 2000.

World Wide Web Consortium. XSL Transformations (XSLT) Version 1.0, W3C
Recommendation, Nov 1999. http://www.w3.org/TR/1999/REC-xslt-
19991116.

World Wide Web Consortium. Extensible Markup Language (XML) Version 1.0 (Second
Edition), Oct 2000. http://www.w3c.org/TR/2000/REC-xml-
20001006.

Office for Standards in Education. Inspection Report - RNIB New College, Worcester,
page 37. Oct 2000. Inspection number 223644.

Peter Gregor and Alan F. Newell. An emperical investigation of ways in which some of the
problems encountered by some dyslexics may be alleviated using computer techniques. In
Proceedings of the Fourth International ACM Conference on Assistive Technologies
ASSETS 2000, pages 85-91, Nov 2000.

Dirk Hermsdorf, Henrike Gappa, and Michael Pieper. Webadapter: A prototype of a WWW-
browser with new special needs adaptations. In Proceedings of the 4th ERCIM Workshop
on ‘User Interfaces for All’, number 8 in Long Papers: WWW Browsers for All, page 15.
ERCIM, 1998.

10 S.S. Brown and P. Robinson

Julie A. Jacko, Max A. Dixon, Robert H. Rosa, Jr., Ingrid U. Scott, and Charles J. Pappas.
Visual profiles: A critical component of universal access. In Proceedings of ACM CHI 99
Conference on Human Factors in Computing Systems, volume 1 of Profiles, Notes, and
Surfaces, pages 330-337, 1999.

Julie A. Jacko and Andrew Sears. Designing interfaces for an overlooked user group:
Considering the visual profiles of partially sighted users. In Third Annual ACM
Conference on Assistive Technologies, pages 75-77, 1998.

Bill McCann. GOODFEEL Braille Music Translator. Dancing Dots Braille Music
Technology, 1754 Quarry Lane, P.O. Box 927, Valley Forge, PA 19482, USA.
http://www.dancingdots.com/.

David Taylor and Christopher Harris. About nystagmus. Technical report, Nystagmus
Network, 108c Warner Road, Camberwell, London, SE5 9HQ, UK, Sep 1999.
http://www.btinternet.com/~lynest/nystag.pdf.

